hd-map1 정밀지도 객체 분류 및 네트워크를 이용한 교정 최적화 Reading & Summary 본 논문은 자율주행 시스템에서 안정적으로 차량을 통제할 수 있기 위해서 필요로 하는 환경인식 중 객체 분류에 관한 내용을 다루고 있습니다. 보통 카메라를 이용하여 여러 객체들을 분류하는 YOLO와 같은 딥러닝 알고리즘이 익숙한 사람이 많겠지만, 본 논문은 LiDAR데이터와 카메라 데이터를 융합한 데이터 셋을 이용하여 학습을 진행하는 특징을 갖고 있습니다. 또한 ICP알고리즘을 이용하여 카메라와 LiDAR 캘리브레이션 한 연구내용도 주목하도록 합시다. 정밀지도 객체 분류 및 네트워크를 이용한 교정 최적화[1] 강동완 등 4명, 2020 전체 요약 이 연구의 목적은 라이다센서와 카메라 센서를 동시에 이용하면서 딥러닝을 이용한 객체 분류와 라이다 센서와 카메라 센서 간 불가피하게 일어나는 오차들을 각 이미지마.. 2020. 8. 3. 이전 1 다음