포인트 클라우드들은 기본적으로 3차원 행렬입니다. 모든 점들을 3차원 행렬안에서 작업하는것이죠. 따라서 그 행렬들을 다루기 위해서는 행렬변환을 이용할 수 있는데, PCL에서 C++ 언어 환경에서 어떻게 회전변환행렬을 구현하는지 따라가보도록 하겠습니다.
https://pcl.readthedocs.io/projects/tutorials/en/latest/matrix_transform.html?highlight=rotation
[ROS PCL] 포인트 클라우드 회전변환행렬을 통한 Rotation 하기
Using a matrix to transform a point cloud
1. 전체 코드
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/io/ply_io.h>
#include <pcl/point_cloud.h>
#include <pcl/console/parse.h>
#include <pcl/common/transforms.h>
#include <pcl/visualization/pcl_visualizer.h>
// This function displays the help
void
showHelp(char * program_name)
{
std::cout << std::endl;
std::cout << "Usage: " << program_name << " cloud_filename.[pcd|ply]" << std::endl;
std::cout << "-h: Show this help." << std::endl;
}
// This is the main function
int
main (int argc, char** argv)
{
// Show help
if (pcl::console::find_switch (argc, argv, "-h") || pcl::console::find_switch (argc, argv, "--help")) {
showHelp (argv[0]);
return 0;
}
// Fetch point cloud filename in arguments | Works with PCD and PLY files
std::vector<int> filenames;
bool file_is_pcd = false;
filenames = pcl::console::parse_file_extension_argument (argc, argv, ".ply");
if (filenames.size () != 1) {
filenames = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
if (filenames.size () != 1) {
showHelp (argv[0]);
return -1;
} else {
file_is_pcd = true;
}
}
// Load file | Works with PCD and PLY files
pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
if (file_is_pcd) {
if (pcl::io::loadPCDFile (argv[filenames[0]], *source_cloud) < 0) {
std::cout << "Error loading point cloud " << argv[filenames[0]] << std::endl << std::endl;
showHelp (argv[0]);
return -1;
}
} else {
if (pcl::io::loadPLYFile (argv[filenames[0]], *source_cloud) < 0) {
std::cout << "Error loading point cloud " << argv[filenames[0]] << std::endl << std::endl;
showHelp (argv[0]);
return -1;
}
}
/* Reminder: how transformation matrices work :
|-------> This column is the translation
| 1 0 0 x | \
| 0 1 0 y | }-> The identity 3x3 matrix (no rotation) on the left
| 0 0 1 z | /
| 0 0 0 1 | -> We do not use this line (and it has to stay 0,0,0,1)
METHOD #1: Using a Matrix4f
This is the "manual" method, perfect to understand but error prone !
*/
Eigen::Matrix4f transform_1 = Eigen::Matrix4f::Identity();
// Define a rotation matrix (see https://en.wikipedia.org/wiki/Rotation_matrix)
float theta = M_PI/4; // The angle of rotation in radians
transform_1 (0,0) = std::cos (theta);
transform_1 (0,1) = -sin(theta);
transform_1 (1,0) = sin (theta);
transform_1 (1,1) = std::cos (theta);
// (row, column)
// Define a translation of 2.5 meters on the x axis.
transform_1 (0,3) = 2.5;
// Print the transformation
printf ("Method #1: using a Matrix4f\n");
std::cout << transform_1 << std::endl;
/* METHOD #2: Using a Affine3f
This method is easier and less error prone
*/
Eigen::Affine3f transform_2 = Eigen::Affine3f::Identity();
// Define a translation of 2.5 meters on the x axis.
transform_2.translation() << 2.5, 0.0, 0.0;
// The same rotation matrix as before; theta radians around Z axis
transform_2.rotate (Eigen::AngleAxisf (theta, Eigen::Vector3f::UnitZ()));
// Print the transformation
printf ("\nMethod #2: using an Affine3f\n");
std::cout << transform_2.matrix() << std::endl;
// Executing the transformation
pcl::PointCloud<pcl::PointXYZ>::Ptr transformed_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
// You can either apply transform_1 or transform_2; they are the same
pcl::transformPointCloud (*source_cloud, *transformed_cloud, transform_2);
// Visualization
printf( "\nPoint cloud colors : white = original point cloud\n"
" red = transformed point cloud\n");
pcl::visualization::PCLVisualizer viewer ("Matrix transformation example");
// Define R,G,B colors for the point cloud
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> source_cloud_color_handler (source_cloud, 255, 255, 255);
// We add the point cloud to the viewer and pass the color handler
viewer.addPointCloud (source_cloud, source_cloud_color_handler, "original_cloud");
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> transformed_cloud_color_handler (transformed_cloud, 230, 20, 20); // Red
viewer.addPointCloud (transformed_cloud, transformed_cloud_color_handler, "transformed_cloud");
viewer.addCoordinateSystem (1.0, "cloud", 0);
viewer.setBackgroundColor(0.05, 0.05, 0.05, 0); // Setting background to a dark grey
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "original_cloud");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "transformed_cloud");
//viewer.setPosition(800, 400); // Setting visualiser window position
while (!viewer.wasStopped ()) { // Display the visualiser until 'q' key is pressed
viewer.spinOnce ();
}
return 0;
}
2. 코드 분석
2.1 라이브러리 추가
#include <iostream>
#include <pcl/io/pcd_io.h>
#include <pcl/io/ply_io.h>
#include <pcl/point_cloud.h>
#include <pcl/console/parse.h>
#include <pcl/common/transforms.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/common/transforms.h> 가 pcl::transformPointCloud 기능을 사용할 수 있도록 해줍니다.
2.2 코드 초기화
void
showHelp(char * program_name)
{
std::cout << std::endl;
std::cout << "Usage: " << program_name << " cloud_filename.[pcd|ply]" << std::endl;
std::cout << "-h: Show this help." << std::endl;
}
// Show help
if (pcl::console::find_switch (argc, argv, "-h") || pcl::console::find_switch (argc, argv, "--help")) {
showHelp (argv[0]);
return 0;
}
본 기능은 유저가 원하는 변수설정을 하지 못했을때를 대비하여 화면에 표시해 주는 기능입니다.
// Fetch point cloud filename in arguments | Works with PCD and PLY files
std::vector<int> filenames;
bool file_is_pcd = false;
filenames = pcl::console::parse_file_extension_argument (argc, argv, ".ply");
if (filenames.size () != 1) {
filenames = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
if (filenames.size () != 1) {
showHelp (argv[0]);
return -1;
} else {
file_is_pcd = true;
}
}
파일이 pcd인지 ply인지 확인하는 과정입니다.
// Load file | Works with PCD and PLY files
pcl::PointCloud<pcl::PointXYZ>::Ptr source_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
if (file_is_pcd) {
if (pcl::io::loadPCDFile (argv[filenames[0]], *source_cloud) < 0) {
std::cout << "Error loading point cloud " << argv[filenames[0]] << std::endl << std::endl;
showHelp (argv[0]);
return -1;
}
} else {
if (pcl::io::loadPLYFile (argv[filenames[0]], *source_cloud) < 0) {
std::cout << "Error loading point cloud " << argv[filenames[0]] << std::endl << std::endl;
showHelp (argv[0]);
return -1;
}
}
이제 PCD혹은 PLY파일을 실행하고 잘 실행되었는지 확인하는 과정입니다.
2.3 회전변환행렬
/* Reminder: how transformation matrices work :
|-------> This column is the translation
| 1 0 0 x | \
| 0 1 0 y | }-> The identity 3x3 matrix (no rotation) on the left
| 0 0 1 z | /
| 0 0 0 1 | -> We do not use this line (and it has to stay 0,0,0,1)
METHOD #1: Using a Matrix4f
This is the "manual" method, perfect to understand but error prone !
*/
Eigen::Matrix4f transform_1 = Eigen::Matrix4f::Identity();
변환행렬을 만들기 위한 첫 시도 입니다. 4*4행렬을 초기화 하는 과정을 가집니다.
// Define a rotation matrix (see https://en.wikipedia.org/wiki/Rotation_matrix)
float theta = M_PI/4; // The angle of rotation in radians
transform_1 (0,0) = std::cos (theta);
transform_1 (0,1) = -sin(theta);
transform_1 (1,0) = sin (theta);
transform_1 (1,1) = std::cos (theta);
// (row, column)
// Define a translation of 2.5 meters on the x axis.
transform_1 (0,3) = 2.5;
// Print the transformation
printf ("Method #1: using a Matrix4f\n");
std::cout << transform_1 << std::endl;
여기서 우리는 45도 회전을 z축을 기준으로 정의합니다.
/* METHOD #2: Using a Affine3f
This method is easier and less error prone
*/
Eigen::Affine3f transform_2 = Eigen::Affine3f::Identity();
// Define a translation of 2.5 meters on the x axis.
transform_2.translation() << 2.5, 0.0, 0.0;
// The same rotation matrix as before; theta radians around Z axis
transform_2.rotate (Eigen::AngleAxisf (theta, Eigen::Vector3f::UnitZ()));
// Print the transformation
printf ("\nMethod #2: using an Affine3f\n");
std::cout << transform_2.matrix() << std::endl;
두번째 접근은 이해기 더 쉽습니다. 만약 여러 회전을 하고싶다고 한다면 교환법칙이 성립하지 않는다는걸 명심하세요. (rotA * rotB != rotB * rotA.)
2.4 대입
// Executing the transformation
pcl::PointCloud<pcl::PointXYZ>::Ptr transformed_cloud (new pcl::PointCloud<pcl::PointXYZ> ());
// You can either apply transform_1 or transform_2; they are the same
pcl::transformPointCloud (*source_cloud, *transformed_cloud, transform_2);
source_cloud 를 transformed_cloud에 변환된 결과를 넣어줄 겁니다.
// Visualization
printf( "\nPoint cloud colors : white = original point cloud\n"
" red = transformed point cloud\n");
pcl::visualization::PCLVisualizer viewer ("Matrix transformation example");
// Define R,G,B colors for the point cloud
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> source_cloud_color_handler (source_cloud, 255, 255, 255);
// We add the point cloud to the viewer and pass the color handler
viewer.addPointCloud (source_cloud, source_cloud_color_handler, "original_cloud");
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> transformed_cloud_color_handler (transformed_cloud, 230, 20, 20); // Red
viewer.addPointCloud (transformed_cloud, transformed_cloud_color_handler, "transformed_cloud");
viewer.addCoordinateSystem (1.0, "cloud", 0);
viewer.setBackgroundColor(0.05, 0.05, 0.05, 0); // Setting background to a dark grey
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "original_cloud");
viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 2, "transformed_cloud");
//viewer.setPosition(800, 400); // Setting visualiser window position
while (!viewer.wasStopped ()) { // Display the visualiser until 'q' key is pressed
viewer.spinOnce ();
}
return 0;
PCLVisualizer 를 이용하여서 결과를 시각화 합니다. 본래의 포인트클라우드들은 하얀색으로 보일것이고, 변환된것은 빨간색으로 보일겁니다.
3. 코드 응용
본 코드를 이용하여 ros에서 rosbag파일을 실행하여 회전변환행렬을 적용시켜 보도록 하겠습니다.
#include <iostream>
#include <cmath>
#include <vector>
#include <ros/ros.h>
#include <sensor_msgs/PointCloud2.h>
#include <pcl_ros/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl_conversions/pcl_conversions.h>
#include <velodyne_pointcloud/point_types.h>
#include <pcl/common/common.h>
#include <pcl/common/centroid.h>
#include <pcl/common/transforms.h>
#include <pcl/console/parse.h>
#include <set>
#include <pcl/io/pcd_io.h>
#include <boost/format.hpp>
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/passthrough.h>
#define VPoint velodyne_pointcloud::PointXYZIR
#define Point2 pcl::PointXYZI
#define PI 3.14159265359
using namespace std;
ros::Publisher pub1;
float theta_r = 180 * M_PI/ 180; // 라디안 각도로 회전 (180도 회전)
void input(const sensor_msgs::PointCloud2ConstPtr& scan)
{
// Msg to pointcloud
pcl::PointCloud<pcl::PointXYZI>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZI>);
pcl::fromROSMsg(*scan,*cloud); // ros msg 에서 pcl cloud 데이터로 변환
//회전변환행렬
Eigen::Matrix4f transform_1 = Eigen::Matrix4f::Identity();
// Define a rotation matrix (see https://en.wikipedia.org/wiki/Rotation_matrix)
transform_1 (0,0) = std::cos (theta_r);
transform_1 (0,1) = -sin(theta_r);
transform_1 (1,0) = sin (theta_r);
transform_1 (1,1) = std::cos (theta_r);
// (row, column)
// Executing the transformation
pcl::PointCloud<pcl::PointXYZI>::Ptr transformed_cloud (new pcl::PointCloud<pcl::PointXYZI> ());
pcl::transformPointCloud (*cloud, *transformed_cloud, transform_1);
pcl::PCLPointCloud2 cloud_p;
pcl::toPCLPointCloud2(*transformed_cloud, cloud_p);
sensor_msgs::PointCloud2 output;
pcl_conversions::fromPCL(cloud_p, output);
output.header.frame_id = "velodyne";
pub1.publish(output);
}
int main(int argc, char** argv)
{
ros::init(argc, argv, "input");
ros::NodeHandle nh;
ros::Subscriber sub = nh.subscribe<sensor_msgs::PointCloud2> ("/os1_cloud_node/points", 100, input); //front ouster
pub1 = nh.advertise<sensor_msgs::PointCloud2> ("/velodyne_points_rotated", 100);
ros::spin();
}
2.3 의 회전행렬변환 코드를 가져다 응용하였습니다. OS-1 라이다 센서의 경우 본래 x축이 반대를 바라보고 있기 때문에 본 코드가 유용하게 쓰일것으로 생각합니다.
바꿔준 부분은 변수설정부분에서 Intensity를 추가하기 위해 PointXYZ 에서 PointXYZI로 바꿔 주었구요, ROS 메세지로 들어오는 bag파일 로깅 데이터를 포인트클라우드 데이터로 바꿔주는 코드를 넣어주었습니다.
비주얼라이제이션 (시각화)를 위하여 다시 ROS메세지 형식으로 바꾸어 주었고 velodyne 이라는 이름으로 퍼블리쉬까지 한 코드입니다.
4. 결과
고속도로환경에서의 rosbag 로깅데이터입니다. 좌측이 원본데이터고 우측이 회전변환행렬을 적용한 화면입니다. 잘 회전했음을 확인하였습니다.
다음에는 ROI (Region of Interest) 관심영역을 설정하는 필터를 설계하는 포스트를 작성하겠습니다.
'Autonomous Vehicle > LiDAR : Point Cloud' 카테고리의 다른 글
[ROS PCL] 포인트 클라우드 포인트 추출하고 군집화 하기 (차선 추출 및 Euclidean Distance Clustering) (0) | 2020.08.19 |
---|---|
[ROS PCL] 포인트 클라우드 ROI(Region of Interest) 설정하기 (4) | 2020.08.16 |
ROS PCL : Voxelize 포인트 클라우드 라이브러리를 이용하여 voxelize 하기 (0) | 2020.08.04 |
Ouster Lidar : OS1-64 우분투 ROS 환경에서 설정하기 (0) | 2020.07.30 |
Loam velodyne : LOAM Open Source 실행 하기 (11) | 2020.07.28 |